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Abstract—In this paper, we propose a systematic solution to the
problem of scheduling delay-sensitive media data for transmission
over time-varying wireless channels. We first formulate the
dynamic scheduling problem as a Markov decision process that
explicitly considers the users’ heterogeneous multimedia data
characteristics (e.g., delay deadlines, distortion impacts and de-
pendences, and so on) and time-varying channel conditions, which
are not simultaneously considered in state-of-the-art packet
scheduling algorithms. This formulation allows us to perform
foresighted decisions to schedule multiple data units for trans-
mission at each time in order to optimize the long-term utilities
of the multimedia applications. The heterogeneity of the media
data enables us to express the transmission priorities between
the different data units as a priority graph, which is a directed
acyclic graph. This priority graph provides us with an elegant
structure to decompose the multidata unit foresighted decision
at each time into multiple single-data unit foresighted decisions
which can be performed sequentially, from the high priority data
units to the low priority data units, thereby significantly reducing
the computation complexity. When the statistical knowledge of
the multimedia data characteristics and channel conditions is
unknown a priori, we develop a low-complexity online learning
algorithm to update the value functions, which capture the impact
of the current decision on the future utility. The simulation results
show that the proposed solution significantly outperforms existing
state-of-the-art scheduling solutions.

Index Terms—Delay sensitive scheduling, directed acyclic
graph (DAG), energy-efficient multimedia transmission systems,
multimedia streaming.

I. Introduction

EXISTING wireless networks provide dynamically vary-
ing resources with only limited support for the qual-

ity of service required by delay-sensitive, bandwidth-intense
and loss-tolerant multimedia applications. One of the key
challenges for delivering the multimedia data over wireless
networks is the dynamic characteristics of both the wireless
channels and the multimedia source data [1]. To overcome this
challenge, packet scheduling optimization has been extensively
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investigated in recent years in order to maximize the quality
of the multimedia applications given the underlying resource
constraints.

The multimedia data is often encoded and encapsulated
into multiple data units (DUs), which can be video frames,
slices, packets, and so on. Different DUs often have different
distortion impacts, delay deadlines, and dependences. Existing
packet scheduling solutions often ignore these heterogeneous
characteristics of multimedia applications. For example, [2]–
[5] only assumed the upper layer packets are homogeneous and
share the same delay deadline. References [8], [9], and [25]
did not take into account the complicated dependences among
media packets. In [26], a channel, deadline, and distortion-
aware packet scheduling algorithm is developed, where only
one frame is considered for transmission at each time and an
i.i.d. channel is assumed. In this paper, the dependences among
video frames are not considered. In [13], the packet scheduling
is optimized based on packets’ hard delay deadlines, distortion
impacts, and the underlying time-varying wireless channel.
However, [13] did not explicitly take into account the depen-
dences among packets. To take into account the dependences
among packets, in [7], [10], and [12], the packet scheduling is
optimized using a rate-distortion framework (named RaDiO),
which expresses the dependences among packets as a directed
acyclic graph (DAG). However, RaDiO disregards the time-
varying characteristics of the considered transmission network,
thereby leading to a suboptimal performance over wireless
networks. In [6] and [11], the scheduling of video packets over
a time-varying wireless channel is formulated as a cross-layer
optimization problem. However, these cross-layer optimization
solutions only maximize the quality of the currently transmit-
ted video packets based on the observed channel conditions,
without considering future transmission opportunities and the
impact of current decisions on the long-term video quality.
This type of optimization will be referred to in our paper as
myopic optimization.

In summary, a systematic packet scheduling optimization
framework for media communication that explicitly considers
both the heterogeneous characteristics of the multimedia traffic
and the time-varying wireless conditions is still missing. To
overcome this challenge, in this paper we develop a systematic
energy-aware packet scheduling framework for single-user
multimedia transmission over a time-varying wireless channel.

To capture the heterogeneous characteristics of DUs, we
first introduce the concept of a “context” at each time
slot to represent the heterogeneity of the DUs available for
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TABLE I

Summary of Main Notations

Notation Description Notation Description
f

g

j jth DU in GOP g lfg

j
Size of DU f

g

j

qf
g

j
Distortion impact of DU f

g

j df
g

j
Delay deadline of DU f

g

j

f
g

j′ ≺ f
g

j DU f
g

j depends on DU f
g

j′ W Scheduling time window

yf,t ; yt Transmitted data of DU f at time t;
transmitted data of all DUs in
context Ct

xf,t ; xt Remaining packets of DU f at time t;
remaining packets of all DUs in
context Ct

Ct Context at time t Tt Traffic state
ht Channel state at time t st State including both traffic state and

channel state

u
(
st , yt

)
Utility at state st when yt amount of data
is transmitted

ρ (h, y) Energy function

α Discounted factor V (Ct, xt , ht) State value function
U (Ct, zt , ht) Postdecision state value function f�f ′ DU f has higher transmission priority

than DU f ′

PGt Priority graph Uf

(
Ct, xf,t , ht

)
Postdecision state value function for DU
f

pf (z) Dependence factor λ Tradeoff parameter

transmission at each time slot. Through the context concept,
we are able to capture the dynamic features of the multimedia
packets across time. We then formulate the dynamic packet
scheduling optimization as a Markov decision process (MDP)
problem [14] by further considering the underlying channel
dynamics. Within the MDP formulation, the packet scheduling
is performed in a foresighted fashion in order to maximize the
long-term reconstructed multimedia quality.

In the conventional MDP formulation, the foresighted
decision for the packet scheduling is often coupled with the
expectation over the experienced dynamics, which makes
the packet scheduling problem hard to solve in unknown
environments (i.e., where the statistical knowledge of the
multimedia data arrivals and channel state transitions is un-
known). To resolve this obstacle, we introduce a postdecision
state (which is a “middle” state, in which the transmitter finds
itself after packet transmission but before the new packet
arrivals and new channel realization) and a corresponding
postdecision state-value function which represents the optimal
long-term utility starting from the postdecision state. Through
the postdecision state value function, we can separate the
foresighted decision on the packet scheduling from the
expectation over the underlying dynamics. In other words,
the foresighted decision can be computed without knowing
the experienced dynamics, given the postdecision state value
function. The postdecision state value functions can then be
updated online accordingly. Hence, the postdecision state
concept allows us to separate the packet scheduling at each
time slot into two phases (i.e., two-phase packet scheduling):
one is the foresighted decision on the optimal scheduling
given the postdecision state value function, and the other one
is the online update on the postdecision state value function.

In order to reduce the complexity involved in computing the
packet scheduling policy, we define the transmission priorities
of the DUs in each context based on the distortion impacts,
delay deadlines and dependences, and express them as a DAG,
which we refer to simply as the priority graph. Different from

the DAG expression on the source coding dependences in [7],
the proposed DAG construction represents the transmission
priorities which include the packet dependences. Through
the priority graph, we are able to separate the multi-DU
foresighted decision at each time slot into multiple single-DU
foresighted decisions and the two-phase packet scheduling is
applied to each individual DU, which significantly reduce the
complexity in computing the optimal foresighted decisions.

In the unknown environment, we further develop an online
learning algorithm to estimate the postdecision state value
functions. Based on the separation developed for multi-DU
foresighted optimization, we are able to estimate the postdeci-
sion state value functions for each DU using a low-complexity
online learning method.

This paper is organized as follows. Section II characterizes
the attributes of the multimedia traffic. Section III formulates
the packet scheduling problem for multiple independently
decodable DUs as an MDP and develops structural solutions to
determine the optimal packet scheduling policies. Section IV
further extends the structural results to the packet scheduling
for interdependent DUs. Section V presents the simulation
results, followed by the conclusions in Section VI. A summary
of main notations is listed in Table I.

II. Multimedia Traffic Characteristics

In this section, we discuss how the heterogeneous attributes
of multimedia traffic1 can be represented. In past work,
multimedia traffic (e.g., video traffic) is often modeled as
a leaky bucket with constraints (e.g., peak rate constraint,
average delay constraint, and so on) [19]. However, this model
only characterizes the rate change in multimedia traffic and
does not explicitly consider the heterogeneous characteristics
of multimedia data. In this section, we aim to develop a general
model to represent the encoded multimedia data with heteroge-
neous characteristics (e.g., various delay deadlines, distortion

1Multimedia traffic can be generated in real time or be pre-encoded.
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impacts, dependences, and so on). Using this multimedia
traffic model, we will be able to dynamically optimize packet
scheduling for multimedia transmission over time-varying
wireless networks, which is presented in Sections III and IV.

A. Attributes of Data Units

In this section, we discuss how the heterogeneous attributes
of the multimedia data can be modeled. The multimedia data
is often encoded periodically using a group of pictures (GOP)
structure, which lasts a period of T time slots. The multimedia
data within one GOP are encoded interdependently using, e.g.,
motion estimation, while the data belonging to different GOPs
are encoded independently. Note that the prediction-based
coding schemes often lead to sophisticated dependences. After
being encoded, each GOP contains N data units (DUs), each
representing one type of DU (e.g., I, P, B frames in encoded
video bitstream) and being indexed by j ∈ {1, . . . , N}. The
set of DUs within a GOP g ∈ N is denoted by

{
f

g
1 , . . . , f

g
N

}
.

The attributes of DU f
g
j are listed below.

Size: The size of DU f
g
j is denoted by lf g

j
(measured in

packets,2) where lf g

j
∈ [

1, lmax
j

]
, and lmax

j is the maximum
allowable size for the jth DU at each GOP. The size of DU
f

g
j is determined when DU f

g
j is encoded. To simplify the ex-

position, lf g

j
is generated from an i.i.d. random variable3 with

the probability mass function PMFf
g

j
(l). Note that PMFf

g

j
(l)

is the same for the jth DU across different GOPs, but it differs
for different types of DUs.

Distortion impact: Each DU f
g
j has a distortion impact qf

g

j

per packet, which is assumed to be the same for all the GOPs,
i.e., qf

g

j
= q

f
g′
j

, ∀g, g′. The distortion impact qf
g

j
represents

the amount by which the multimedia distortion is reduced if
one packet from DU f

g
j is received at the decoder side. The

distortion impact computation is similar to [6]. Note that the
developed framework is also applicable in the case when the
packets within one DU have different distortion impact.

Delay deadline: The delay deadline of DU f
g
j represents

the time by which the DU should be decoded in order to be
displayed. We denote by df

g

j
the delay deadline of DU f

g
j .

Since the GOP structure is fixed, the difference between the
delay deadlines of the two DUs within one GOP is constant,
i.e., df

g

j
− df

g

j′
= �djj′ > 0 where j > j′, and the delay

deadlines of the same types of DUs from different GOPs
satisfy df

g

j
−d

f
g−1
j

= T . In other words, the jth DU periodically
appears at each GOP with the period of T time slots, which
is the length of one GOP.

Dependence: When one DU f
g
j is encoded based on the

prediction from the other DU f
g
j′ , we say that DU f

g
j depends

on DU f
g
j′ . Note that the dependences among DUs only occur

within one GOP and DUs from different GOPs can be de-
coded independently (i.e., no dependence between them). The
dependences among the DUs within one GOP are expressed
as a DAG [7]. The DAG remains the same for a fixed GOP

2For simplicity, we assume in this paper that each packet has the same
length, but this does not affect our proposed solution. It just simplifies our
exposition given the space limitations.

3The DU size can also be modeled as a random variable depending on the
previous DUs.

structure. In this paper, we assume that if DU f
g
j depends on

DU f
g
j′ (i.e., there exists a path directed from DU f

g
j to DU

f
g
j′ in the DAG and denoted by f

g
j′ ≺ f

g
j ), then df

g

j
≥ df

g

j′
and

qf
g

j
≤ qf

g

j′
. In other words, DU f

g
j′ should be decoded prior to

DU f
g
j and DU f

g
j′ has higher distortion impact.

B. Traffic State Representation in Each Time Slot

We consider a time-slotted system in which the nth time
slot is defined as the time interval [n�t, (n + 1) �t), where
�t is the length of one time slot. In this subsection, we
discuss how to represent the multimedia traffic which is
ready for transmission at each time slot. At time slot t, as
in [7], we assume that the wireless user will only consider
for transmission the DUs with delay deadlines in the range
of [t, t + W), where W is referred to as the scheduling time
window (STW) and assumed to be determined a priori.4 In
this paper, we further assume that the STW is chosen to satisfy
the following condition: if DU f

g
j directly depends on DU f

g
j′

(i.e., there is a direct arc from f
g
j to f

g
j′ in the DAG), then

df
g

j
− df

g

j′
< W . This assumption ensures that DU f

g
j and f

g
j′

can be considered for transmission at the same time slot.
At time slot t, we introduce a context to represent the

set of DUs that are considered for transmission, i.e., whose
delay deadlines are within the range of [t, t + W).5 We denote
the context by Ct =

{
f

g
j |df

g

j
∈ [t, t + W)

}
. Since the GOP

structure is fixed, it is easy to show that Ct is periodic with
the period of T , which means that for any f

g
j ∈ Ct , there

exists f
g+1
j ∈ Ct+T and vice versa. Hence, Ct and Ct+T have

the same types of DUs and the same DAG between these
DUs. For example, as shown in Fig. 1, Ct =

{
f

g
1 , f

g
2 , f

g
3

}
and

Ct+3 =
{

f
g+1
1 , f

g+1
2 , f

g+1
3

}
, where T = 3. Since the context

represents the set of DUs to be transmitted, it implicitly repre-
sents the dependences among the DUs. Due to the periodicity,
there are only T different contexts. The transition from context
Ct to Ct+1 is deterministic. It is worthy to know that the
context indicates the distortion impacts of the DUs and the
dependences among DUs and the context transition indicate
the delay deadlines of the DUs.

Given the current context Ct , we let xf,t denote the number
of packets in the buffer associated with DU f ∈ Ct . Note that
xf,t ≤ lf , where lf represents the amount of the originally
available packets for DU f . We denote the buffer state of
the DUs in Ct by x t =

{
xf,t|f ∈ Ct

}
. The traffic state

Tt at time slot t is then defined as Tt = (Ct, xt), where
the context represents the types of DUs, the dependences
among them, and the buffer state xt represents the amount
of packets remaining for transmission. Hence, the traffic state
Tt is able to capture heterogeneous multimedia traffic and is a
super-set of existing well-known single-buffer models (which

4The STW can be determined based on the channel conditions experienced
by the user in each time slot. For example, the STW can be set small when the
channel conditions are poor (i.e., in the low SNR regime), and large whenever
the channel conditions are good (i.e., in the large SNR regime).

5We assume that df
g

j
− tf g

j
≥ W which means that the DUs that are

considered for transmission at the time slot t must arrive no later than time
slot t.
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Fig. 1. DAG-based dependences and traffic states at each time slot using
IBPBP GOP structure.

ignore packet dependences and delay deadlines) or multibuffer
models (which ignore packet dependences or delay deadlines).

III. Packet Scheduling for Independently

Decodable DUs

We first consider how the packet scheduling optimization
should be performed for the DUs that can be independently
decoded (e.g., motion JPEG), and consider the interdependent
DUs in Section IV.

At each time slot t, the wireless user experiences a channel
condition ht ∈ H, where H is the set of finite possible channel
conditions and ht is referred to as the channel state. In this pa-
per, we assume that the wireless channel is slow-fading and the
channel condition ht can be modeled as a finite-state Markov
chain [18] with transition probability ph

(
h′|h) ∈ [0, 1]. We

further define the state which the wireless user experiences
at each time slot t as st = (Ct, xt , ht), which includes the
current context, buffer state and channel state. At time slot
t, the wireless user decides how many packets should be
transmitted from each DU in the current context. The decision
is represented by yt (Ct, xt , ht) =

{
yf,t|f ∈ Ct

}
, where yf,t

represents the amount of packets transmitted from DU f and
0 ≤ yf,t ≤ xf,t . We know that the decision in time slot t is a
function of the current state st . In this paper, we consider the
following utility6 at each time slot t:

u
(
st, yt

)
=
∑
f∈Ct

qf yf,t − λρ

⎛
⎝ht,

∑
f∈Ct

yf,t

⎞
⎠ . (1)

In this utility function, the first term represents the distor-
tion reduction obtained by transmitting the amount of data
yt =

[
yf,t

]
f∈Ct

from the DUs in the current context. The second
term represents the negative value of the consumed energy by
transmitting the amount

∑
f∈Ct

yf,t of packets, where λ > 0
is the parameter trading-off the distortion reduction and the
consumed energy. The energy consumption function ρ (h, y)
is assumed to be a convex function of y given the channel
condition h. One example is ρ (h, y) = σ2

(
e2yL − 1

)
/h,

where is L the length of one packet, which is derived
from the information-theoretic rate-power function [20]. In
this paper, we only consider the distortion reduction and
energy consumption tradeoff instead of the transmission rate
constraint because the transmission rate in each time slot is
determined by the energy allocation given the channel state.

6In this paper, we consider that the multimedia quality is defined as the
total distortion reduction of the received media packets.

Then, the wireless user aims to maximize the following long-
term expected discounted utility:

max
yt (st ),∀t

E

{ ∞∑
t=0

αtu
(
st, yt

)}
(2)

where α ∈ [0, 1) is the discount factor. Note that when α → 1,
the optimal solution to the optimization in (2) is equivalent to
the optimal solution to the problem maximizing the average
utility. For independently decodable DUs, given the decision
yt (st) in time slot t, the buffer state transition is

xf,t+1 =

{
xf,t − yf,t, if f ∈ Ct

⋂
Ct+1

lf , if f ∈ Ct+1\Ct
(3)

where the notation “Ct

⋂
Ct+1” represents the set of DUs

persist from time slot t to time slot t + 1 (i.e., do not expire at
the end of time slot t) and Ct+1\Ct represents the set of DUs
that arrive in time slot t + 1.

From the above discussion, we know that the channel state
transition and buffer state transition are Markovian. We further
notice that the buffer state transition also depends on yt , which
is the decision made by the wireless user. Hence, the transition
of the state st = (Ct, xt , ht) is Markovian and the problem in
(2) can be formulated as an MDP [14]. In the subsequent
sections, we will discuss how the packet scheduling problem
can be solved using an MDP formulation.

A. MDP Formulation and Postdecision State-Based Dynamic
Programming

In the problem in (2), the decision in each time slot t is to
determine the amount of data, yf,t to be transmitted for each
DU f ∈ Ct . From [14], we know that the optimal decision
can be found by solving the following Bellman’s equations:

V (Ct, xt , ht) =

max
0≤yt≤xt

{ ∑
f∈Ct

qf yf,t − λρ
(
ht,
∑

f∈Ct
yf,t

)
+

αEht+1|ht,lt+1V
(
Ct+1,

(
xt − yt

)⊕ lt+1, ht+1
)
}

(4)
where V (Ct, xt , ht) is the state-value function representing the
optimal long-term utility starting from the state (Ct, xt , ht) and
lt+1 =

{
lf ′
}

f ′∈Ct+1\Ct
. The operator zt ⊕ lt+1 denotes the union

operation between
{
zf,t

}
f∈Ct∩Ct+1

and
{
lf ′
}

f ′∈Ct+1\Ct
, where{

zf,t

}
f∈Ct∩Ct+1

represents the remaining data (i.e., data which
was not transmitted at time slot t) in DU f ∈ Ct ∩ Ct+1

after the data transmission at time slot t and
{
lf ′
}

f ′∈Ct+1\Ct

represents the newly arriving data in DU f ′ ∈ Ct+1\Ct at time
slot t + 1. It is easy to see that the buffer state fulfils the
following condition: xt+1 =

(
xt − yt

) ⊕ lt+1. The expectation
in (4) is taken over all the possible new channel states ht+1

with the probability of p (ht+1|ht) and over the possible data
arrival for the DUs in the set Ct+1\Ct with the probability of∏

f ′∈Ct+1\Ct
PMFf ′

(
lf ′
)
.

From (4), it is worthy to note that the expectation (over
the data arrival and channel state transition) is embedded into
the term to be maximized. However, in an actual system,
the distribution of the data arrival for each DU and channel
state transition is often unavailable a priori, which makes
it computationally impossible to directly optimize the long-
term utility shown in (2). Similar to [21], we introduce an
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Fig. 2. Postdecision state illustration.

intermediate state which represents the state after transmitting
the data (making the decision), but before the new data arrives
and new channel state is realized. This intermediate state is
referred to as the postdecision state s̃t . In order to differentiate
the “postdecision” state s̃t from the state st , we refer to
the state st as the “normal” state. The postdecision state at
time slot t is also illustrated in Fig. 2. From this figure, we
know that the postdecision state is a deterministic function
of the normal state st and the decision yt , which is given
by s̃t = (Ct, zt , ht), where zt=xt − yt . In other words, after
introducing the postdecision states, the decision yt only affects
the transition from the normal state st to the postdecision
state s̃t , and the dynamics only affect the transition from the
postdecision state s̃t to the normal state st+1.

Similarly, we introduce the postdecision state-value function
U (Ct, zt , ht) to represent the optimal long-term utility starting
from the postdecision state s̃t = (Ct, zt , ht). Then, we can
rewrite the Bellman’s equations in (4) as

U (Ct, zt , ht) = Eht+1|ht,lt+1V (Ct+1, zt ⊕ lt+1, ht+1) (5)

and

V (Ct, xt , ht) = max
0≤yt≤xt

{∑
f∈Ct

qf yf,t−λρ

(
ht,
∑

f∈Ct

yf,t

)

+αU
(
Ct, xt−yt , ht

)}
.

(6)

The first equation shows that the postdecision state-value
function U is obtained from the normal state-value function
V by taking the expectation over the possible data arrivals
and possible channel transitions. The second equation shows
that the normal state-value function is then obtained from
the postdecision state-value function U by performing the
maximization over the possible decision, which is referred
to as the foresighted decision since the optimal decision is
found by maximizing the long-term utility. However, when
performing the foresighted decision illustrated in (6), we face
the following challenges.

1) At each time slot, there are multiple DUs that are
available for transmission. Determining the amount of
data to transmit for each DU is a multivariable opti-
mization which is often too complicated to solve at each
time slot. However, it is fortunate that the DUs can be
prioritized based on their heterogeneous data features.
This prioritization will allow us to separate the multi-
DU foresighted decision in (6) into multiple single-DU

foresighted decisions (which is single-variable optimiza-
tion). The separation will be presented in Sections III-C.

2) In video transmission systems, we do not know the
statistical knowledge of the underlying dynamics (e.g.,
channel state transition, the amount of packets for
newly arriving DUs). However, after introducing the
postdecision state s̃t = (Ct, zt , ht), we can separate
the media transmission system into two phases: the
foresighted decision phase, which is governed by (6)
and the dynamic realization phase, which is governed
by (5). We further notice that given the postdecision
state-value function U, the foresighted decision phase
is independent of the dynamic realization phase. This
motivates us to directly learn the postdecision state-value
function when the underlying dynamics are unknown.
In Section III-D, we will present how the postdecision
state-value functions can be learned over time for the
separated foresighted decisions.

B. Transmission Priority of DUs

In this section, we aim to define the transmission priorities
between DUs. At each time slot t, the optimal amount of data
to be transmitted from DU f ∈ Ct is denoted by y∗

f,t .
Definition 1 (Transmission Priority): At any time slot t, if

f, f ′ ∈ Ct and
(
xf,t − y∗

f,t

)
y∗

f ′,t = 0 for any xt ≥ 0 and any
channel state ht , then DU f has a higher transmission priority
than DU f ′, which is denoted by f�f ′.

The above definition on the priority indicates that when DU
f has a higher transmission priority than DU f ′, then the
data from DU f will be transmitted before the data from DU
f ′ is transmitted. Given the optimal postdecision state value
function U (Ct, xt , ht), we can prioritize the DUs as follows.

Lemma 1 (Prioritization Using Optimal Postdecision State
Value Functions): For any two DUs f, f ′ ∈ Ct , if

U
(
Ct, x + ef , ht

)− U
(
Ct, x + ef ′ , ht

)
<
(
qf − qf ′

)
/α ∀x

(7)
where ef is a vector which has the same dimension as x and
the element corresponding to DU f ∈ Ct is 1 and the elements
corresponding to all other DUs are 0, then f�f ′.

Proof: See Appendix A.
In Lemma 1, the left side of the inequality represents the

long-term utility difference between the scenario that the DU f

is not transmitted at the current time slot and the scenario that
DU f ′ is not transmitted at the current time slot. The right side
represents the distortion impact difference of two DUs (scaled
by the discount factor). When the long-term utility difference
is smaller than the distortion impact difference, then DU f

has the higher transmission priority than DU f ′.
However, as shown in Lemma 1, in order to determine

the priorities of the DUs, we have to compute the optimal
postdecision state value function first, which may not be
possible in practical video transmission systems since we
cannot obtain the postdecision state value function without
first solving the Bellman’s equations in (5) and (6). However,
we are able to derive the priorities between the DUs based on
the heterogeneous attributes of DUs without computing the
optimal postdecision state value functions.
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Fig. 3. Examples of priority graphs with five DUs. (a) All DUs are priori-
tized (chain). (b) Only part of the DUs are prioritized (e.g., the priorities of
DUs 2 and 3 are unknown).

Lemma 2 (Prioritization Using the Heterogeneous Attributes
of Independent DUs): For DUs f, f ′ ∈ Ct , if qf ≥ qf ′ and
df ≥ df ′ (equalities do not hold at the same time), then f�f ′.

Proof: See Appendix B.
The priority f�f ′ indicates that

(
xf,t − y∗

f,t

)
y∗

f ′,t = 0 at any
time slot t when f, f ′ ∈ Ct . This further implies that: 1) the
buffer state xf ′,t of DU f ′ does not affect the decision on the
amount of data, y∗

f,t , to be transmitted from DU f at any time
slot t; and 2) when starting to transmit the data from DU f ′, all
the data from DU f must be transmitted, i.e., the postdecision
traffic state for DU f is zero. In the next section, we will
utilize the priorities between DUs and present the separation
in the multi-DU foresighted decision given in (6) and develop
a low-complexity scheduling algorithm.

C. Priority Graph-Assisted Scheduling

Given the transmission priority between DUs derived based
on the DUs’ attributes as shown in Lemma 2, we are able to
construct a DAG to represent the priorities of the DUs at each
time slot, which is referred to as the priority graph and denoted
by PGt = 〈Ct, Et〉, where Ct is the set of DUs available
for transmission and Et is the set of edges representing the
priorities between two DUs. In this priority graph, if f�f ′,
then there is an edge in Et pointed from DU f ′ to DU f . Two
examples of priority graphs are shown in Fig. 3. Note that
the priority graph is different from the dependence graph [7],
which is built only based on the source coding dependences
among DUs.

In the following, we will try to separate the multi-DU
foresighted decision in (6) into multiple one-DU foresighted
decisions. We first consider that the DUs available for trans-
mission at each time slot can be fully prioritized [i.e., the
corresponding priority graph is a chain as shown in Fig. 3
(a)]. The following theorem shows that we can decompose
the multi-DU foresighted decision into multiple single-DU
foresighted decisions at each time slot.

Theorem 1 (separation principle for multi-DU foresighted
decision with priority graph of chain): When the DUs in each
context are prioritized as a chain, then the optimal decision
for each DU at each time slot can be computed as

y∗
f,t = arg max

0≤yf,t≤xf,t{
qf yf,t − λρ

(
ht,
∑

f ′�f xf ′,t + yf,t

)
+αUf

(
Ct, xf,t − yf,t, ht

)} (8)

where the postdecision state value function Uf (Ct, x, ht) sat-
isfies the following Bellman’s equations:

if f ∈ Ct

⋂
Ct+1, then

Uf

(
Ct, xf,t, ht

)
= E

ht+1|ht

E
lf ′ :f ′�f,f ′∈Ct+1/C

max
0≤yf,t+1≤x{

qf yf,t+1 − λρ
(
ht+1,

∑
∀f ′�f,f ′∈Ct+1/Ct

lf ′ + yf,t+1

)
+

αUf

(
Ct+1, xf,t − yf,t+1, ht+1

)
}

(9)
and if f ∈ Ct/Ct+1, then Uf (Ct, x, ht) = 0.

Proof: See Appendix C.
Remark 1: Theorem 1 indicates that we can find the optimal

decision y∗
f,t for each DU f ∈ Ct by solving the foresighted

decision given in (8) from the highest priority DU to the lowest
priority DU. In this foresighted decision, the postdecision
state-value function Uf

(
Ct, xf,t − yf,t, ht

)
only depends on

the buffer state xf,t − yf,t of DU f and is independent of
the buffer states of the other DUs in the current context
Ct . This is because when transmitting the data from DU
f , the data from DU f ′ (f ′�f

)
has been transmitted (i.e.,

the buffer state is zero), and the data from DU f ′ (f�f ′)
cannot be transmitted [i.e., the buffer state will not affect
the foresighted decision in (8)]. We note that when making
the foresighted decision for DU f , the transmission cost
is ρ

(
ht,
∑

f ′�f xf ′,t + yf,t

)
− ρ

(
ht,
∑

f ′�f xf ′,t

)
, which is

the marginal transmission cost of transmitting the data from
DU f . However, the term ρ

(
ht,
∑

f ′�f xf ′,t

)
is independent

of the decision variable yf,t and hence, it is not shown in the
foresighted decision in (8).

Remark 2: The postdecision state value function for DU f

is computed as in (9). If DU f is expired at time slot t + 1,
then the postdecision state value function is zero, otherwise it
is computed by solving the Bellman’s equations for DU f . In
the Bellman’s equations, we note that the postdecision state-
value function for DU f is not affected by DUs f ′ (f�f ′). In
fact, it only depends on the buffer states of the DUs that arrive
at time slot t + 1 and have a higher priority than DU f . We
can also note that the update of the postdecision state-value
function for DU f ′ is not affected by DU f .

We now consider a general scenario where the priorities of
DUs at each time slot are represented by a general priority
graph instead of a chain. The priority graph for the DUs at
time slot t is given by PGt = 〈Ct, Et〉. Similar to Theorem 1,
for any two DUs f, f ′ ∈ Ct , if f�f ′, then we should transmit
the data from DU f first and the buffer state of DU f ′ does
not affect the foresighted decision for DU f . However, the
buffer state of DU f will affect the transmission cost of DU
f ′ in the foresighted decision, but will not affect the update
of the postdecision state value function. If f and f ′ are not
prioritized, we have to decide which DU should be transmitted
first and how much data should be transmitted from this
selected DU. The following theorem answers this question.

Theorem 2 (separation principle for multi-DU foresighted
decision with general priority graph): Given the priority graph
PGt = 〈Ct, Et〉 at time slot t, the optimal decisions for the
DUs are performed as in Algorithm 1. After determining the
optimal decisions, the postdecision state value function of DU
f is updated as follows.
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Algorithm 1: Optimal packet scheduling induced by the
priority graph for independent DUs

Input: PGt , Uf

(
Ct, xf,t − yf,t , ht

)
Initialize: PG0

t = PGt

For k = 1, · · · , |Ct |:
f k = arg max

f∈root

(
PGk

t

) max
0≤yf,t≤xf,t{

qf yf,t − λρ

(
ht,
∑k−1

j=1
y∗

fj ,t
+ yf,t

)
+ αUf

(
Ct, xf,t − yf,t , ht

)}
(11)

y∗
fk ,t

= arg max
0≤y

fk ,t
≤x

fk ,t

{
q

fk y
fk ,t

− λρ

(
ht,
∑k−1

j=1
y∗

fj ,t
+ y

fk,t

)
+αU

fk

(
Ct, xfk ,t

− y
fk,t

, ht

)
}

(12)

where root
(
PGk

t

)
is the operator extracting the roots of the priority graph

PGk
t and PGk

t = PGk−1
t /
{

f k−1
}

.

Return
(
f 1, · · · , f |Ct |

)
and

(
y∗

f1 ,t
, · · · , y∗

f |Ct | ,t

)
.

If f ∈ Ct ∩ Ct+1, then
Uf

(
Ct, xf,t, ht

)
= E

ht+1|ht

E
lf ′ :f ′�̃f,f ′∈Ct+1/C

max
0≤yf,t+1≤xf,t⎧⎪⎪⎨

⎪⎪⎩
qf yf,t+1 − λρ

⎛
⎝ht+1,

∑
f ′�̃f,f ′∈Ct+1/Ct

lf ′ + yf,t+1

⎞
⎠+

αUf

(
Ct+1, xf,t − yf,t+1, ht+1

)
⎫⎪⎪⎬
⎪⎪⎭

(10)
else, Uf (Ct, x, ht) = 0, where f ′�̃f means that the transmis-
sion order of DU f ′ is earlier than DU f , which is determined
in Algorithm 1.

Proof: The proof can be derived similarly to that of
Theorem 1.

The optimal packet scheduling illustrated in Algorithm 1
can be easily explained as follows. Starting from the priority
graph PGt , we compare the DUs that are the roots in the pri-
ority graph PGk

t and select the DU with the highest long-term
utility to transmit as shown in (11). The optimal scheduling
for the selected DU is found by solving the corresponding
foresighted decision as shown in (1). Finding the optimal
packet scheduling in state st = (Ct, xt , ht) as illustrated in
Algorithm 1 can also be interpreted by using a priority tree,
which is uniquely constructed from the priority graph PGt

corresponding to the context Ct . Two examples of priority
trees, which correspond to the priority graphs in Fig. 3, are
given in Fig. 4. The root of the priority tree is the priority graph
PGt and each node is a priority graph. The child nodes of each
node in the priority tree are obtained by removing one of the
root packets in the priority graph at this node. Then, finding
the optimal packet scheduling is equivalent to “traveling” the
priority tree induced by the priority graph PGt .

The update of the postdecision state-value function
Uf (Ct, x, ht) for DU f is performed independently of the
other DUs in the current context Ct as shown in (10), which is
the same as the update of the postdecision state value function
for the fully prioritized DUs presented in Theorem 1. However,
unlike in Theorem 1, when updating the postdecision state-
value function Uf (Ct, x, ht), we cannot directly prioritize
all the DUs arriving at time slot t + 1, i.e., the DUs in the
set of Ct+1\Ct because we may not be able to compare the
transmission priority between the arriving DUs with the DUs
persisting from time slot t, i.e., in the set of Ct+1 ∩Ct . Hence,

Fig. 4. Priority trees induced from (a) graph in which all packets are
prioritized (chain), and (b) graph in which some packets are prioritized and
others are not.

we resort to the priority graph built for the DUs in the set
of Ct+1\Ct

⋃ {f } and Algorithm 1 in order to determine
the transmission orders of the DUs in this set. When the
transmission order of the DUs Ct+1\Ct

⋃ {f } is determined,
we can update the postdecision state-value function
Uf (Ct, x, ht) for DU f which only depends on the DUs that
are transmitted before it (i.e., DUs f ′ such that f ′�̃f ) at the
same time slot. It is easy to show that Algorithm 1 preserves
the transmission priority (i.e., DUs with higher priorities are
always transmitted before DUs with lower priorities).

D. Online Learning

In multimedia transmission systems, we do not know the
statistical knowledge about the packet arrivals for each DU and
the underlying channel state transition. Without this statistical
knowledge, we cannot directly update the postdecision state
value function for each DU as shown in (10). In the following,
we show how we can update the postdecision state-value
functions for the DUs without having the statistical knowledge
about the underlying dynamics.

From (10), we know that the expectation over the
dynamics is performed outside of the maximization and that
the dynamics (including the packet arrivals and channel state
transition) are independent of the buffer states. Then, we are
able to update the postdecision state-value function using time-
average as presented in [22]. That is, we can update the
postdecision state-value function for all the possible buffer
states for each DU at each time slot. The online learning
algorithm for each DU f ∈ Ct is presented as follows. At
time slot t, we first perform Algorithm 1 to determine the
optimal decision for all the DUs in the context of Ct and
the transmission order

(
f 1, · · · , f |Ct |). Then the postdecision

state-value function for DU f ∈ Ct

⋂
Ct−1 is updated for all

the possible buffer state x ∈ [0, lmax
f

]
as follows.

Online learning for independent DUs

Uf,t (Ct−1, x, ht−1) =

(1−βt) max
0≤yf,t+1≤x

⎧⎪⎪⎨
⎪⎪⎩

qf yf,t−λρ

⎛
⎝ht,

∑
f ′�̃f,f ′∈Ct/Ct−1

lf ′ + yf,t

⎞
⎠

+αUf,t−1
(
Ct, x − yf,t, ht

)
⎫⎪⎪⎬
⎪⎪⎭

+βtUf,t−1 (Ct−1, x, ht−1)
(13)

where βt is a diminishing step size, e.g., βt = 1/t.
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We highlight the key ideas of the convergence proof of
the online learning algorithm described above and refer the
interested reader to [22] for more details of the proof.

First, in Theorems 1 and 2, we can separate the postdecision
state-value function U (Ct, xt , ht) into multiple postdecision
state-value functions

{
Uf

(
Ct, xf,t, ht

)
, f ∈ Ct

}
, each cor-

responding to one DU in the current context. Then each
postdecision state-value function Uf

(
Ct, xf,t, ht

)
is updated

subsequently based on the transmission priority. The ad-
vantage of this separation is that it allows us to update
each 1-D postdecision state-value function Uf

(
Ct, xf,t, ht

)
subsequently, given the current context Ct and channel
state ht instead of the original multidimensional function
U (Ct, xt , ht).

Second, our online learning algorithm transmits the data
according to the transmission priority as shown in Algorithm 1.
From Lemma 1, we know that transmitting the DUs with
higher transmission priority increases the postdecision state-
value function Uf

(
Ct, xf,t, ht

)
. Hence, it can be easily shown

that Uf

(
Ct, xf,t, ht

)
is a concave function of xf,t given the

current context Ct and channel state ht .
Third, in [22], we show that the concave function

Uf

(
Ct, xf,t, ht

)
can be approximated by a piecewise linear

function and updated on-the-fly, which can significantly re-
duce the complexity of updating the postdecision state value
function.

Fourth, the on-the-fly updating of the postdecision state-
value function will converge since the updating procedure in
(10) is a maximum norm α-contractor.

IV. Packet Scheduling for Interdependent DUs

In this section, we aim to develop a packet scheduling
solution for interdependent DUs. Different from the inde-
pendent DUs case, due to interdependences, the scheduling
decision on each DU f will be affected by the amount of
data transmitted from the DUs on which DU f depends.
As discussed in Section II, the dependence between DUs is
expressed by a DAG which is different from the priority graph
defined in Section III-B. In order to capture the impact of
the dependence between the DUs, we introduce a dependence
factor pf (v) ∈ [0, 1] for each DU f to represent the impact
on the distortion reduction of those DUs that depend on DU
f , which is a function of the amount of data remaining
when DU f is expired. One example of dependence factor
is pf (z) = exp(−βf z) as given in [23] and [24]. Then, the
utility at each time slot is given by

u
(
st, yt

)
=
∑
f∈Ct

∏
f ′≺f

pf ′
(
zf ′,df ′

)
qf yf,t − λρ

⎛
⎝ht,

∑
f∈Ct

yf,t

⎞
⎠
(14)

where zf ′,df ′ is the remaining amount of data in the postde-
cision state of DU f ′ at time slot df ′ (i.e., the amount of
data from DU f ′ that are not received by the decoder). The
difference between (14) and (1) is that the distortion reduction
in (14) depends on not only the number of packets transmitted
for each DU as shown in (1), but also the dependence factors

of the DUs that the current DUs depend on. The long-term
utility is the same as in (2).

For the interdependent DUs, in order to capture the Marko-
vian property of the scheduling problem, we define the state
at each time slot t as st = (Ct, pt , xt , ht) to include the current
context Ct , buffer states xt , channel state ht and dependence
factor vector pt from the parent DUs. The dependence factor
vector pt is given by pt =

[
pf ′
(
zf ′,df ′

)]
f ′≺f,f∈Ct

. That is, the
dependence factor vector includes all the dependence factors of
the DUs that the DUs in the set Ct depend on. The postdecision
state is defined as the state after the scheduling decision
but before the new DU arrivals and the new channel state
realization. We note that the postdecision dependence factor
vector is the same as pt . We directly use pt as the postdecision
dependence factor vector in the postdecision state. Hence, the
multi-DU foresighted decision based on the postdecision states
is given as follows:

V
(
Ct, pt , xt , ht

)
= max

0≤yt≤xt{ ∑
f∈Ct

∏
f ′≺f pf ′

(
zf ′,df ′

)
qf yf,t − λρ

(
ht,
∑

f∈Ct
yf,t

)
+αU

(
Ct, pt , xt − yt , ht

)
}

(15)

where U
(
Ct, pt , zt , ht

)
is the postdecision state value func-

tion.
Similar to the independent DUs, we aim to separate the

multi-DU foresighted decision in (15) into multiple single-DU
foresighted decision. We can introduce the priority between
interdependent DUs to differentiate the transmission orders
of the DUs in the current context Ct . However, due to the
dependence, we cannot directly apply Lemma 2 here. Instead,
we can prioritize the DUs using their heterogeneous attributes
in the following lemma.

Lemma 1 (prioritization using heterogeneous attributes of):
interdependent DUs For any context Ct , if f, f ′ ∈ Ct and
f ≺ f ′, then f�f ′.

Proof: First, we notice that if f ≺ f ′, then qf ≥ qf ′ and
df ≤ df ′ . Furthermore, when f ≺ f ′, from (14), we know that
the gained distortion reduction from DU f ′ (i.e., pf ′,tqf ′yf ′,t)
is discounted by the dependence factor pf ′,t which is impacted
by the amount of remaining data at DU f . In other words,
transmitting the data from DU f will always achieve higher
long-term utility than transmitting the data from DU f ′, which
means f�f ′.

From Lemma 3, we note that, based on the dependences
among DUs, we can construct the priority graph PGt =
〈Ct, Et〉 for each context Ct . It is clear that the priority graph
PGt is the dependence graph corresponding to the DUs in the
current context Ct . At time slot t, given the priority graph PGt

and the dependence factors vector pf,t =
[
pf ′
(
zf ′,df ′

)]
f ′≺f

for
each DU f ∈ Ct , we can perform the foresighted decision
for each DU as in Algorithm 2. In Algorithm 2, we separate
the multi-DU foresighted decision and perform it by traveling
the priority tree as illustrated in Fig. 4, which preserves the
priorities between DUs.

Similarly, we can also update the postdecision state value
function Uf

(
Ct, pf,t, xf,t, ht

)
as follows.
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Algorithm 2: Optimal Packet Scheduling Induced by the
Priority Graph for Interdependent DUs

Input: PGt , pt , Uf

(
Ct, pf,t, xf,t, ht

)
Initialize: PG0

t = PGt

For k = 1, · · · , |Ct|:
f k =

arg max
f∈root

(
PGk

t

) max
0≤yf,t≤xf,t

{
1T pf,t · qf yf,t − λρ

(
ht,
∑k−1

j=1
y∗

fj ,t
+ yf,t

)
+αUf

(
Ct,pf,t , xf,t − yf,t , ht

)
}

(16)

y∗
fk ,t

=

arg max
0≤y

fk ,t
≤x

fk ,t

{
1T p

fk ,t
· q

fk y
fk ,t

− λρ

(
ht,
∑k−1

j=1
y∗

fj ,t
+ y

fk,t

)
+αU

fk

(
Ct, pfk ,t

, x
fk ,t

− y
fk,t

, ht

)
}

(17)

where root
(
PGk

t

)
is the operator extracting the roots of

the priority graph PGk
t , PGk

t = PGk−1
t /

{
f k−1

}
and

update pf,t, f �= f 1, · · · , f k.

Return
(
f 1, · · · , f |Ct |) and

(
y∗

f 1,t
, · · · , y∗

f |Ct |,t

)
.

Online learning for interdependent DUs: If f ∈ Ct−1
⋂

Ct

(i.e., DU f is not expired at both time slots)

Uf,t

(
Ct−1, pf,t−1, x, ht−1

)
=

(1 − βt ) max
0≤yf,t+1≤x

⎧⎪⎪⎨
⎪⎪⎩

1T pf,t · qf yf,t − λρ

⎛
⎝ht,

∑
f i, i < k

f i ∈ Ct/Ct−1

l
f i

+ yf,t

⎞
⎠

+αUf,t−1

(
Ct, pf,t−1, x − yf,t , ht

)
⎫⎪⎪⎬
⎪⎪⎭

+βtUf,t−1

(
Ct−1, pf,t−1x, ht−1

)
.

(18)
If f ∈ Ct−1\Ct (i.e., DU f is expired at time slot t)

Uf,t

(
Ct−1, pf,t−1, x, ht−1

)
= (1 − βt )

∑
f ′ :f≺f ′ max

0≤y
f ′ ,t+1≤x⎧⎪⎪⎨

⎪⎪⎩
1T pf ′ ,t−1 · qf ′ yf ′ ,t − λρ

⎛
⎝ht,

∑
f i, i < k

f i ∈ Ct/Ct−1

l
f i

+ yf ′ ,t

⎞
⎠

+αUf ′ ,t−1

(
Ct, pf ′ ,t−1, x − yf ′ ,t , ht

)
⎫⎪⎪⎬
⎪⎪⎭

+βtUf,t−1

(
Ct−1, pf,t−1, x, ht−1

)
.

(19)
When DU f is not expired at both time slots t − 1 and

t, we update the postdecision state value function using a
time-average similar to the one in (13). However, when DU
f is expired at time slot t (i.e., f ∈ Ct−1\Ct), due to the
dependence, the postdecision state of DU f at time slot t − 1
will affect the decision of those DUs in the context Ct that
depend on DU f . Hence, the postdecision state value function
of DU f is updated as in (19) to take into account the
dependence impact on the descendent DUs, which is different
from the case of independent DUs, where the postdecision
state value function is zero.

However, since the dependence-factor vector pf,t often has
high dimensionality (because the DUs in the set Ct depend
on multiple DUs) and takes real values in the range of
[0, 1], it is difficult to compute and store the postdecision
state value function directly. Instead of computing the post-
decision state-value function Uf

(
Ct, pf,t, zt , ht

)
directly, we

approximate it by 1T pf,t · Uf (Ct, zt , ht), where Uf (Ct, zt , ht)
is the postdecision state-value function corresponding to the

TABLE II

Channel States Used in the Simulation

Channel Gain (h2/σ2) Regions Representative
States

(0, 0.0280], (0.0280, 0.0580] (0.0580,
0.0960] (0.0960, 0.1400] (0.1400,
0.1980] (0.1980, 0.2780], (0.2780,
0.4160] (0.4160, ∞]

0.0131, 0.0418,
0.0753, 0.1157,
0.1661, 0.2343,
0.3407, 0.6200

case that pf,t = 1 which means that all the DUs that DU
f depends on are successfully received. Then Uf (Ct, zt , ht)
can be updated using (18) and (19) by setting pf,t = 1
and pf ′,t = 1,∀f ≺ f ′. It is clear that the approximation
allows us to represent the postdecision state-value function
as presented in Section III-D, which significantly reduces the
dimensionality of the postdecision state-value function. This
is because the dependence-factor vector is not the component
of the arguments in the approximated postdecision state-value
function any longer.

V. Simulation Results

In this section, we perform several numerical experiments
to verify the performance of the proposed framework and
compare with various state-of-the-art solutions for multimedia
communications.

A. Performance Comparison of Various Packet Scheduling
Solutions for Video Transmission

In this section, we compare our proposed packet scheduling
solution with start-of art solutions which only consider either
the heterogeneous media characteristics or the time-varying
channel conditions.

The energy function for transmitting the amount of y (in
packets) traffic at the channel state h is given by c (h, y) =
σ2
(
2Ly − 1

)
/ |h|2, where σ2 is the variance of the white

Gaussian noise [20]. In this simulation, we choose h̄2/σ2 =
0.14, where h̄ is the average channel gain. We divide the
entire channel gain range into eight regions each of which is
represented by a representative state. The states are presented
in Table II. We choose α = 0.95. The transmission system is
time-slotted with the time slot length of 10 ms.

We consider three comparable solutions: 1) our proposed
packet scheduling solution which takes into account both the
heterogeneous multimedia traffic characteristics (e.g., delay
deadlines, distortion impacts and dependences, and so on)
and time-varying network conditions; 2) the packet scheduling
solution [6] which only considers the distortion impact of
each media packet and the observed channel conditions and is
referred to as “distortion-impact” driven packet scheduling;
and 3) the packet scheduling solution obtained by solving
the rate-distortion optimization assuming the constant channel
conditions (i.e., using average channel conditions) and linear
transmission cost as in RaDiO [7], [12], which is referred to
as the rate-distortion optimized packet scheduling.

In the first experiment, to compress the video data, we used
a wavelet-based scalable video coding scheme [15], which
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is attractive for wireless streaming applications because it
provides on-the-fly application adaptation to channel condi-
tions, support for a variety of wireless receivers with different
resource capabilities and power constraints, and easy prioriti-
zation of various coding layers and video packets. We choose
for this experiment three video sequences (Foreman, Coast-
guard and Mobile at CIF resolutions, 30 frames/s), exhibiting
different motion activities. The video sequences Foreman and
Coastguard are encoded at the bit rate of 512 kb/s and Mobile,
due to its high-frequent texture and complicated motion, is
encoded at 1024 kb/s. In this simulation, each GOP contains
16 frames and each encoded video frame can tolerate a delay
of 266 ms, corresponding to the half duration of a GOP. The
packet arrival distribution PMFf

g

j
(l) of each DU is content-

dependent and is not required to know in our simulation. The
scheduling time window W is set to 266 ms. The tradeoff
parameter λ is varied from 1 to 30 to get different quality-
energy tradeoffs.

In Fig. 5(a)–(c), we show the peak-signal-to-noise ratio
(PSNR) as a function of the consumed energy curves under the
different scheduling solutions for the three video sequences.
From these figures, we note that our proposed cross-layer
optimization solution outperforms both the “distortion-impact”
driven packet scheduling and rate-distortion optimized packet
scheduling by, on average, around 2 dB and 5 dB in Foreman,
1.5 dB and 3.5 dB in Coastguard, and 0.5 dB and 2.5 dB in
Mobile in terms of PSNR. The improvement comes from the
fact that, in our proposed solution, as shown in (15), we
schedule the video packets at each time slot based on not
only the current packet distortion, the estimated dependence
factor from the previous video packets, the incurred transmis-
sion cost, but also the impact of the current video packets
on the following video packets through postdecision state-
value function. Hence, the heterogeneous characteristics of
the multimedia packets as well as the time-varying channel
conditions are automatically taken into account when we make
a scheduling decision. In contrast to our solution, the rate-
distortion optimized packet scheduling solution only considers
the current packet distortion, the dependence factor from the
previous packets and the impact on the following video packets
through the dependence factor including both the previous and
current packets. However, it does not consider the incurred
transmission cost and time-varying channel conditions. The
“distortion-impact”-driven solution only considers the current
packet distortion and time-varying channel conditions. We
also notice that the “distortion-impact”-driven solution obtains
higher received video quality than the rate-distortion optimized
packet scheduling. It shows that the time-varying channel
conditions and the characteristics (dependences, distortion
impacts and delay constants) of media packets play a very
important role in improving the media quality.

In the second experiment, we compress the video sequence
(CrowdRun at resolution 720 ×540, 30 frames/s) using H.264
SVC [17]. The video sequence is encoded at 2 Mb/s with the
GOP structure of “IBBBBBBBP” and each frame having three
quality layers. In this simulation, each GOP contains eight
frames and each encoded video frame can tolerate a delay of
266 ms, corresponding to the duration of a GOP. We transmit

Fig. 5. PSNR-energy curve of (a) Foreman, (b) Coastguard, and (c) Mobile
sequences for different transmission solutions.

the encoded video using three scheduling methods mentioned
above under the same energy constraint (0.5 Joule). We get
the video quality (in terms of PSNR) of 38.0 dB, 36.9 dB,
and 36.1 dB, for the proposed solution, “distortion impact”-
driven solution and RaDiO-based solution, separately. The
quality improvement comes from the fact that our proposed
solution is able to explore both the traffic heterogeneity and
channel variations. This experiment also illustrates that the
proposed scheduling solution is applicable to different video
codecs [16], [17] once the dependences of video packets can
be modeled as direct-acyclic graphs and the distortion impact
of each packet can be computed.
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Fig. 6. Video quality of Coastguard sequence with various delay deadlines
when 16-frame GOP is used.

Fig. 7. Video quality of Coastguard sequence with various delay deadlines
when 8-frame GOP is used.

B. Performance of Packet Scheduling Optimization with
Various Delay Constraints and GOP Structures

In this section, we further compare the performance of the
packet scheduling optimization solutions for streaming the
Coastguard video sequence with various delay constraints and
GOP structures. The wireless channel settings are the same
as in Section V-A. We compare our solution with different
combinations of delay deadlines and GOP structures. The
PSNR versus consumed energy curves are given in Figs. 6 and
7. From Fig. 6, we notice that, when the video sequence is
encoded with the GOP of 16 frames, by increasing the delay
from 266 ms to 533 ms, the packet scheduling optimization
can improve, on average, 1 dB in terms of PSNR. From
Fig. 7, we further notice that, when the video sequence is
encoded with the GOP of 8 frames, by increasing the delay
from 133 ms to 266 ms, the packet scheduling optimization
can improve, on average, 1.5 dB in terms of PSNR. The
improvement comes from the fact that by increasing the
delay, each media packet has more transmission opportunities
and will be scheduled for transmission when a better channel
condition is encountered. By increasing the number of frames
in one GOP, the video sequence can be encoded more
efficiently and there are fewer packets to be transmitted,
which accordingly improves the video quality.

VI. Conclusion

In this paper, we formulated the problem of packet schedul-
ing optimization for delay-sensitive packetized media appli-
cations as a Markov decision process. Based on the hetero-
geneous characteristics of the media packets, we expressed
the transmission priorities between DUs as a DAG. Using
the DAG expression, we were able to separate the multidata
unit foresighted decision at each time slot into multiple

single-data unit foresighted decisions, which can subsequently
be performed from the high priority DU to the low priority DU.
The postdecision state-value function associated with each DU
is updated individually using the online learning algorithms.
The simulation results show that the proposed foresighted
optimization solution significantly outperforms the start-of-art
solutions which (partially) ignore the media characteristics and
time-varying network conditions.

It is worth noting that error concealment employed at the
decoder side may introduce different interdependences among
DUs. For example, when a direct copy of the collocated data
is used for error concealment, the dependences between the
collocated DUs should be introduced even though there is no
prediction between them. Indeed, our framework can be aug-
mented to allow for different error concealment strategies by
redefining the distortion impact and interdependences among
DU, which will be an interesting area of future research. More-
over, note that this proposed systematic scheduling framework
is general and can be easily applied to many other multimedia-
related problems. For example, using the proposed context to
represent the heterogeneous video data encoded by different
video codecs, e.g., H.264 [16], SVC [15], [17], and so on,
the proposed packet scheduling can also be applied to energy-
efficient video encoding/decoding systems with dynamic volt-
age scaling, by separating the multi-DU scheduling decision
into multiple single-DU scheduling decisions. When the trans-
mission acknowledgement is delayed, as it is the case for
multihop wired and wireless networks, we can easily extend
the proposed scheduling framework using a partially-observed
MDP formulation and then apply the proposed separation for
the foresighted decision. We further noticed that the packet
scheduling algorithm can also be deployed in a multihop
network (e.g., mesh or sensor networks) to relay multimedia
data from other nodes.

APPENDIX A

PROOF OF LEMMA 1

Proof: The optimal decision at time slot t is denoted
by y∗

t =
(
y∗

f,t, y
∗
f ′,t , y

∗
−f−f ′,t

)
where y∗

−f−f ′,t represents the
optimal decision for the DUs other than DUs f, f ′. We
assume that

(
xf,t − y∗

f,t

)
y∗

f ′,t �= 0, which means that xf,t −
y∗

f,t > 0 and y∗
f ′,t > 0. We consider another decision

yt =
(
y∗

f,t + 1, y∗
f ′,t − 1, y∗

−f−f ′,t
)

which is feasible since
xf,t − y∗

f,t > 0 and y∗
f ′,t > 0. We compare the long-term utility

associated with the decision yt to the one associated with the
optimal decision y∗

t (i.e., V (Ct, xt , ht)) as follows:

−qf

(
xf,t − y∗

f,t − 1
)− qf ′

(
xf ′,t − y∗

f ′,t + 1
)−∑

f ′′∈Ct\Ct+1
qf ′′
(
xf ′′,t − y∗

f ′′,t
)− λρ

(
ht,
∑

f ′′∈Ct
yf ′′,t

)
+αU

(
Ct, x − y∗

t − ef + ef ′ , ht

)
= qf − qf ′ + αU

(
Ct, x − y∗

t − ef + ef ′ , ht

)−
αU
(
Ct, x − y∗

t , ht

)
+ V (Ct, xt , ht) > V (Ct, xt , ht).

The inequality is due to the fact that

qf −qf ′+αU
(
Ct, x − y∗

t −ef +ef ′ , ht

)− αU
(
Ct, x − y∗

t , ht

)
=qf − qf ′+αU

(
Ct, x

′−y∗
t +ef ′ , ht

)
−αU(Ct, x

′ − y∗
t + ef ht) > 0
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where x′ = x′−ef and the inequality is from the condition
given in (7).

Hence,
(
xf,t − y∗

f,t

)
y∗

f ′,t �= 0 implies that y∗
t is not the

optimal decision which contradicts the assumption.

APPENDIX B

PROOF OF LEMMA 2

Proof: To prove this, we only need to show that

U(Ct, x + ef , ht)−U(Ct, x + ef ′ , ht) < (qf − qf ′ )/α∀x, t ≤ df .

We prove this using backward induction.
At time slot t = df , on the one hand, we have

U
(
Ct, x + ef , ht

)
= U (Ct, x, ht) because DU f will expire

and be deleted at the next slot and have no contribution
to the postdecision state value function. On the other hand,
we can prove that 0 ≤ U

(
Ct, x + ef ′ , ht

) − U (Ct, x, ht) ≤
qf ′ because the best utility we can obtain in the future
time slots by transmitting one packet in DU f ′ is qf ′ .
Then

−qf ′ ≤ U
(
Ct, x + ef , ht

)− U
(
Ct, x + ef ′ , ht

)
= U (Ct, x, ht) − U

(
Ct, x + ef ′ , ht

) ≤ 0 <
(
qf − qf ′

)
/α.

Now, we assume that at time slot t ≤ df ,
U
(
Ct, x + ef , ht

) − U
(
Ct, x + ef ′ , ht

)
<
(
qf − qf ′

)
/α, ∀x.

We try to prove that U
(
Ct−1, x + ef , ht−1

) −
U
(
Ct−1, x + ef ′ , ht−1

)
<

(
qf − qf ′

)
/α, ∀x at time slot

t. From the Bellman’s equation in (5), we know that
U
(
Ct−1, xt−1 + ef , ht−1

)
= EV

(
Ct, xt + ef , ht

)
where xt+1

is derived from xt by deleting the expired DUs and adding
the new arriving DUs. Hence, it is equivalent to proving that
V
(
Ct, x + ef , ht

) − V
(
Ct, x + ef ′ , ht

)
<
(
qf − qf ′

)
/α, ∀x.

We denote the optimal scheduling decision in computing
V (Ct, x, ht) by y∗

t (x). Then the optimal decision in
computing V

(
Ct, x + ef , ht

)
can be in three cases: 1)

y∗
t

(
x + ef

)
= y∗

t (x), i.e., the additional packet in DU f

is not transmitted; 2) y∗
t

(
x + ef

)
= y∗

t (x) + ef − ef ′′ , i.e.,
transmitting the additional packet in DU f instead of the
packet in DU f ′′; and 3) y∗

t

(
x + ef

)
= y∗

t (x) + ef , i..e
transmitting the additional packet in DU f . Similarly, the
optimal decision in computing V

(
Ct, x + ef ′ , ht

)
also has

three cases. However, we have the following relationship:
if y∗

t

(
x + ef

)
is case i = 1, 2, 3, then y∗

t

(
x + ef ′

)
should

be case i′ = 1, · · · , i. For all the cases, we can prove that
V
(
Ct+1, xt+1 + ef , ht+1

) − V
(
Ct+1, xt+1 + ef ′ , ht+1

) ≤
qf − qf ′/α. For example, we consider that
y∗

t

(
x + ef

)
is case 3 and y∗

t

(
x + ef ′

)
is case 1. Then

V
(
Ct, x + ef , ht

)
=
∑

f ′′∈Ct
qf ′′y∗

f ′′,t + qf −
λρ
(∑

f ′′∈Ct
qf ′′y∗

f ′′,t + 1, ht

)
+ αU

(
Ct, x − y∗

t (x) , ht

) and

V
(
Ct, x + ef ′ , ht

)
=∑

f ′′∈Ct
qf ′′y∗

f ′′,t − λρ
(∑

f ′′∈Ct
qf ′′y∗

f ′′,t , ht

)
+αU

(
Ct, x − y∗

t (x) + ef ′ , ht

)
.

It is clear that

V
(
Ct, x + ef ′ , ht

)
=

∑
f ′′∈Ct

qf ′′y∗
f ′′,t − λρ

⎛
⎝∑

f ′′∈Ct

qf ′′y∗
f ′′,t , ht

⎞
⎠

+αU
(
Ct, x − y∗

t (x) + ef ′ , ht

)
≥
∑

f ′′∈Ct

qf ′′y∗
f ′′,t + qf ′ − λρ

⎛
⎝∑

f ′′∈Ct

qf ′′y∗
f ′′,t + 1, ht

⎞
⎠

+αU
(
Ct, x − y∗

t (x) , ht

)
since y∗

t

(
x + ef ′

)
is in case 3. Hence, we can have

V
(
Ct, x + ef , ht

) − V
(
Ct, x + ef ′ , ht

) ≤ qf − qf ′ . We
can similarly prove the other scenarios. Finally, we
prove that U

(
Ct−1, x + ef , ht−1

) − U
(
Ct−1, x + ef ′ , ht−1

)
<(

qf − qf ′
)
/α.

APPENDIX C

PROOF OF THEOREM 1

Proof: Since the DUs at each time slot are prioritized as
a chain, from Lemma 1, we know that the optimal decision
for each DU is found, starting from the highest priority DU,
by solving the following optimization:

y∗
f,t = arg max

0≤yf,t≤xf,t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qf yf,t−λρ
(
ht,
∑

f ′�f,f ′∈Ct
xf ′,t+yf,t

)
+

αU
(
Ct,
{

0f ′,t
}

f ′�f

⋃{
xf,t − yf,t

}
⋃{

xf ′,t
}

f�f ′ , ht

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where 0f ′,t represents that DU f ′ is empty. As we know, when
performing the foresighted decision for DU f , all the data
from DU f ′(f ′�f

)
has been transmitted and no data from DU

f ′(f�f ′) is transmitted. It is true for any time slot. Hence,
we are able to split the postdecision state-value function in the
above foresighted optimization into two parts

U
(
Ct,
{

0f ′,t
}

f ′�f

⋃{
xf,t − yf,t

}⋃{
xf ′,t
}

f�f ′ , ht

)
=

Uf

((
Ct,
{
xf,t − yf,t

}
, ht

))
+ U{f�f ′}

(
Ct,
{
xf ′,t
}

f�f ′ , ht

)

where Uf

((
Ct,
{
xf,t − yf,t

}
, ht

))
represents the long-term

utility obtained for DU f and U{f�f ′}
(
Ct,
{
xf ′,t
}

f�f ′ , ht

)
represents the long-term utility obtained for all the DUs
f ′ (f�f ′). The reason that we can split it is that the lower
priority DU f ′ (f�f ′) will not affect the foresighted decision
for DU f and the data from the lower priority DU can be
transmitted only if the DUs from the higher priority DUs have
been transmitted (i.e., empty) at the current time slot. Hence,
U{f�f ′}

(
Ct,
{
xf ′,t
}

f�f ′ , ht

)
only depends on the amount

of data from DU f
(
f�f ′)observed before the foresighted

decision (i.e., xf,t) and is independent of the decision at current
time slot. Hence, the foresighted decision for DU f can be
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rewritten as

y∗
f,t = arg max

0≤yf,t≤xf,t⎧⎨
⎩qf yf,t − λρ

⎛
⎝ht,

∑
f ′�f,f ′∈Ct

xf ′,t + yf,t

⎞
⎠ + αUf

(
Ct, xf,t − yf,t, ht

)⎫⎬⎭
which is the form given in (8) and Uf

(
Ct, x̃f,t, ht

)
is the

postdecision state value function associated with DU f .
The update of the postdecision state-value function can be

shown using backward induction, as shown in [22]. We refer
the interested reader to the proof in [22] for more details.
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